首页> 外文OA文献 >Fault Diagnosis of Reciprocating Compressors Using Revelance Vector Machines with A Genetic Algorithm Based on Vibration Data
【2h】

Fault Diagnosis of Reciprocating Compressors Using Revelance Vector Machines with A Genetic Algorithm Based on Vibration Data

机译:基于振动数据的遗传算法的往复式压缩机故障诊断

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper focuses on the development of an advanced fault classifier for monitoring reciprocating compressors (RC) based on vibration signals. Many feature parameters can be used for fault diagnosis, here the classifier is developed based on a relevance vector machine (RVM) which is optimized with genetic algorithms (GA) so determining a more effective subset of the parameters. Both a one-against-one scheme based RVM and a multiclass multi-kernel relevance vector machine (mRVM) have been evaluated to identify a more effective method for implementing the multiclass fault classification for the compressor. The accuracy of both techniques is discussed correspondingly to determine an optimal fault classifier which can correlate with the physical mechanisms underlying the features. The results show that the models perform well, the classification accuracy rate being up to 97% for both algorithms.
机译:本文着重于开发一种基于振动信号来监控往复式压缩机(RC)的高级故障分类器。许多特征参数可用于故障诊断,此处分类器是基于相关向量机(RVM)开发的,该向量机已通过遗传算法(GA)进行了优化,因此可以确定参数的更有效子集。基于RVM的一对一方案和多类多核相关性矢量机(mRVM)均已进行评估,以确定用于实现压缩机多类故障分类的更有效方法。相应地讨论了两种技术的准确性,以确定可以与特征背后的物理机制相关的最佳故障分类器。结果表明,该模型性能良好,两种算法的分类准确率均达到97%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号